Chem. Ber. 106, 3850-3876 (1973)

Phosphorhaltige Kohlenhydrate, VIII¹⁾

Synthese von Glycopyranosylphosphonaten durch Dialkylphosphit-Addition an Glycale unter Allylverschiebung

Hans Paulsen* und Joachim Thiem

Institut für Organische Chemie und Biochemie der Universität Hamburg, D-2000 Hamburg 13, Papendamm 6

Eingegangen am 19. Juli 1973

3,4,6-Tri-O-acetyl-1,2-didesoxyhex-1-enopyranosen (Glycale) reagieren in Dimethylphosphit bei BF₃-Katalyse unter Allylumlagerung zu Dimethyl-(4,6-di-O-acetyl-2,3-didesoxyhex-2enopyranosyl)phosphonaten. In der Pentose-Reihe verläuft die Reaktion entsprechend. Bei Einsatz der *arabino*-Verbindung 2 (Glucal) und der *ribo*-Verbindung 5 (Allal) wird das gleiche Anomeren-Verhältnis 3a zu 6a (1:2) erhalten. Bei Reaktion der *lyxo*-Verbindung 8 (Galaetal) und der *xylo*-Verbindung 11 (Gulal) enthält das gemeinsame Produkt α -Form 9a und β -Form 12a im gleichen Verhältnis (1:3). Die Befunde sprechen für eine S_N1-Reaktion mit Umlagerung. Die Phosphonsäure-dialkylester lassen sich durch Umesterung zu Bistrimethylsilylestern unter milden Bedingungen in freie Phosphonsäuren überführen. ¹H-NMR-, ³¹P-NMR- und Massenspektren der 2-Enopyranosylphosphonate werden diskutiert. Die Hex-2-enopyranosylphosphonate bevorzugen die ^OH₅(D)-Halbsesselkonformation 37.

Phosphorus-containing Carbohydrates, VIII¹⁾

Synthesis of Glycopyranosylphosphonates by Addition of Dialkyl Phosphites to Glycals with Allylic Shift

The reaction of 3,4,6-tri-O-acetyl-1,2-dideoxyhex-1-enopyranoses (glycals) in dimethyl phosphite catalysed by boron trifluoride affords dimethyl (4,6-di-O-acetyl-2,3-dideoxyhex-2-enopyranosyl)phosphonates by allylic rearrangement. A corresponding reaction proceeds in the pentose series. On treatment of the *arabino*-compound 2 (glucal) or the *ribo*-compound 5 (allal) the same anomeric distribution 3a to 6a (1:2) is obtained. In the corresponding reaction of the *lyxo*-compound 8 (galactal) or the *xylo*-compound 11 (gulal) the mutual product contains α -form 9a and β -form 12a again in the same ratio (1:3). These findings support a S_N1 reaction with rearrangement. *Via* transesterification of the dialkyl esters to bistrimethyl-silyl phosphonates the free phosphonic acids are obtained under very mild conditions. ¹H n.m.t., ³¹P n.m.r., and mass spectra of the 2-enopyranosylphosphonates are discussed. The hex-2-enopyranosylphosphonates prefer the ^OH₅(D) half chair conformation 37.

Durch Michaelis-Arbuzov-Reaktion von Glycosylhalogeniden mit Trialkylphosphiten lassen sich keine Glycosylphosphonate darstellen. Es erfolgt hierbei in der Regel Eliminierung zu Hex-1-enopyranosen²⁾. Eine modifizierte Michaelis-Becker-

¹⁾ VII. Mitteil.: H. Paulsen und W. Greve, Chem. Ber. 106, 2124 (1973).

²⁾ H. Paulsen und J. Thiem, Chem. Ber. 106, 115 (1973).

Reaktion von Bromquecksilber-dialkylphosphiten mit Glycosylhalogeniden unter Königs-Knorr-Bedingungen führt zu 1,2-O-[1-(Dialkylphosphono)äthyliden]hexosen³⁾, die mit Glycosylphosphonaten isomer sind. An offenkettige blockierte Aldehydozucker läßt sich zwar nach *Abramov* Dialkylphosphit unter Knüpfung einer C--P-Bindung am C-1 addieren, jedoch erweist es sich als unmöglich, einen Ringschluß zu Glycosylphosphonaten durchzuführen⁴⁾. Nach den Untersuchungen von *Ferrier*⁵⁻⁹⁾ lassen sich auch schwache Nucleophile an Triacetylglycale unter Allylverschiebung anlagern. Wir fanden nun, daß nach diesem Verfahren auch Dialkylphosphit unter mildesten Bedingungen zur Reaktion gebracht werden kann und daß auf diesem Wege erstmalig die C--P-Verknüpfung am C-1 eines Glycopyranosyl-Restes gelingt.

Glycopyranosylphosphonate durch Addition von Dialkylphosphit an Glycale

3,4,6-Tri-O-acetyl-1,2-didesoxy-D-arabino-hex-1-enopyranose (2) (Triacetyl-D-glucal) reagiert, wenn man Dimethylphosphit als Lösungsmittel verwendet, in Gegenwart von katalytischen Mengen Bortrifluorid-Ätherat bei 60°C mit 90% Gesamtausbeute zu einem Anomerengemisch der Dimethyl-(4,6-di-O-acetyl-2,3-didesoxy- α,β -D-erythro-hex-2-enopyranosyl)phosphonate (3a und 6a). Unter diesen Bedingungen treten keine wesentlichen Nebenreaktionen, wie z.B. der ebenfalls mögliche

- ³⁾ H. Paulsen und J. Thiem, Chem. Ber. 106, 132 (1973).
- ⁴⁾ H. Paulsen, W. Greve und H. Kuhne, Tetrahedron Lett. 1971, 2109; B. H. Alexander und W. F. Barthel, J. Org. Chem. 23, 101 (1958).
- ⁵⁾ R. J. Ferrier, W. G. Overend und A. E. Ryan, J. Chem. Soc. 1962, 3667.
- ⁶⁾ R. J. Ferrier, J. Chem. Soc. 1964, 5443.
- 7) D. M. Ciment und R. J. Ferrier, J. Chem. Soc. C 1966, 441.
- ⁸⁾ R. J. Ferrier und N. Prasad, J. Chem. Soc. C 1969, 570.
- ⁹⁾ R. J. Ferrier und M. M. Ponpipom, J. Chem. Soc. C 1971, 553, 560.

Angriff des Nucleophils am C-3 zu 3-Phosphonaten vom Typ **26**, ein. *p*-Toluolsulfonsäure wirkt als Katalysator der Additionsreaktion erheblich ungünstiger als Bortrifluorid. Das Anomeren-Verhältnis von α - zu β -Form **3** zu **6** beträgt etwa 1:2. Die chromatographische Trennung der Anomeren erwies sich als schwierig. Eine Auftrennung konnte nur durch Mehrfachentwicklung an Kieselgel-Dickschichtplatten erzielt werden. Das reine β -Anomere **6a** ließ sich auf diesem Wege kristallin gewinnen. Mit Hilfe dieser Impfkristalle von **6a** konnte dann das in größerer Menge gebildete β -Anomere **6a** bei weiteren Ansätzen direkt aus dem Gemisch **3a** + **6a** kristallin abgeschieden werden.

Da bei der Reaktion unter Addition des Dialkylphosphits am C-1 die 1,2-Doppelbindung von 2 bei Austritt des Acetat-Anions vom C-3 in die 2,3-Stellung verschoben wird, sollte die sterische Anordnung der Austrittsgruppe am C-3 einen Einfluß auf den Ablauf der Reaktion haben. Es wurde daher die isomere 3,4,6-Tri-O-acetyl-1,2didesoxy-D-*ribo*-hex-1-enopyranose (5) (Triacetyl-D-allal) unter gleichen Bedingungen mit Dimethylphosphit umgesetzt. 5 ließ sich in übersichtlicher Weise aus Penta-Oacetyl- β -D-altropyranose (1) über das 2,3,4,6-Tetra-O-acetyl- α -D-altropyranosylbromid (4)¹⁰⁾ gewinnen, das mit Zink in Eisessig 5 liefert. Die Struktur von 5 ließ sich eindeutig durch das ¹H-NMR-Spektrum absichern. Mit Dimethylphosphit liefert 5 bei Bortrifluorid-Katalyse ein gleiches Anomeren-Gemisch 3a + 6a, wie es aus 2 entsteht, mit 60% Ausbeute. Überraschenderweise beträgt das Anomeren-Verhältnis α - zu β -Form 3a zu 6a jetzt ebenfalls etwa 1:2 (vgl. Tab. 2).

Bei früheren Versuchen hatten wir bei der Umsetzung von 3,4,6-Tri-O-acetyl-2-desoxy-D-arabino-hexopyranosylbromid mit Bromquecksilber-diäthylphosphit als Nebenprodukte Zuckerphosphonate erhalten, deren Struktur wir damals nicht aufklären konnten. Diese Zuckerphosphonate erwiesen sich jetzt als identisch mit einem Anomeren-Gemisch 3b + 6b, das in guter Ausbeute durch Reaktion des Triacetyl-D-glucals 2 mit Diäthylphosphit darstellbar ist. Die Bildung von 3b + 6b aus dem 3,4,6-Tri-O-acetyl-2-desoxy-D-arabino-hexopyranosylbromid wird nun verständlich, da hieraus bei der oben genannten Reaktion als Hauptprodukt das Triacetyl-D-glucal 2 entsteht, das offenbar sekundär mit ebenfalls gebildetem Diäthylphosphit unter Quecksilberbromid-Katalyse weiter zu 3b + 6b reagiert.

In einer weiteren Reihe wurde 3,4,6-Tri-*O*-acetyl-1,2-didesoxy-D-*lyxo*-hex-1-enopyranose (8) (Triacetyl-D-galactal) in Dimethylphosphit bei Bortrifluorid-Katalyse umgesetzt. Es wurde zu 70% ein Gemisch der anomeren Phosphonate **9a** + **12a** in einem Anomeren-Verhältnis von α - zu β -Form wie etwa 1:3 erhalten. Durch Mehrfachentwicklung bei der Schichtchromatographie war wiederum die β -Form **12a** kristallin zu erhalten. Beim Animpfen der Reaktionsmischungen **9a** + **12a** kristallisierte dann die β -Form **12a** direkt aus. Analog sind die Äthylester **9b** + **12b** darstellbar.

Auch hier wurde zum Vergleich der isomere Olefinzucker, 3,4,6-Tri-O-acetyl-1,2didesoxy-D-*xylo*-hex-1-enopyranose (11) (Triacetyl-D-gulal), eingesetzt. Durch Reduktion von 2,3,4,6-Tetra-O-acetyl- α -D-idopyranosylbromid (10)¹¹), das aus der Penta-

¹⁰⁾ H. Paulsen, C.-P. Herold und F. Garrido-Espinosa, Chem. Ber. 103, 2463 (1970).

¹¹⁾ F. Garrido-Espinosa, W. P. Trautwein und H. Paulsen, Chem. Ber. 101, 191 (1968).

O-acetyl- α -D-idopyranose (7)¹² zugänglich ist, ließ sich das Glycal 11 kristallin gewinnen und durch das ¹H-NMR-Spektrum in seiner Struktur eindeutig zuordnen⁷). Mit Dimethylphosphit bei Gegenwart von Bortrifluorid liefert 11 zu 70% das gleiche Anomeren-Gemisch der Phosphonate 9a + 12a wie 8, und zwar ebenfalls in einem Anomeren-Verhältnis von α - zu β -Form wie 1:3. Alle vier möglichen isomeren Triacetyl-D-glycale lassen sich somit zu den vier denkbaren Isomeren der Hex-2enopyranosylphosphonate umsetzen.

In der Pentose-Reihe ist es gelungen, 3,4-Di-*O*-acetyl-1,2-didesoxy-D-*threo*-pent-1enopyranose (13) (Diacetyl-D-xylal) und 3,4-Di-*O*-acetyl-1,2-didesoxy-D-*erythro*-pent-1-enopyranose (15) (Diacetyl-D-arabinal) mit Dimethylphosphit bei Gegenwart von $\frac{12}{12}$ *H. Paulsen* und *C.-P. Herold*, Chem. Ber. 103, 2450 (1970).

Bortrifluorid in einer Gesamtausbeute von 60-70% in beiden Fällen zum gleichen Anomeren-Gemisch der Phosphonate **14** + **16** im Verhältnis von etwa 1:2 umzusetzen. Die beiden Anomeren sind durch Mehrfachschichtchromatographie zu trennen. Neben der D-*erythro*-Verbindung **15** wurde auch das entsprechende Enantiomere der L-Reihe **17** (Diacetyl-L-arabinal) umgesetzt. Als Produkte erhält man hierbei die Phosphonate **18** und **19** in ganz entsprechendem Anomeren-Verhältnis.

Es ist ferner gelungen, den Grundkörper der hier bearbeiteten Substanzklasse, das unsubstituierte 2-(Dimethylphosphono)-5,6-dihydro-2*H*-pyran (22) zu gewinnen. Man geht hierfür von 5,6-Dihydro-4*H*-pyran (20) aus, das mit Bleitetraacetat in einer vermutlich radikalisch ablaufenden Reaktion ein Gemisch von Tetrahydrofurylidendiacetat 23, 2-Acetoxy-5,6-dihydro-2*H*-pyran (24) und 4-Acetoxy-5,6-dihydro-4*H*pyran (25) liefert¹³), aus dem sich 23 gut destillativ abtrennen läßt. Da 24 und 25 nicht einfach trennbar waren, wurde das Gemisch mit Dimethylphosphit und Bortrifluorid umgesetzt. Die 2-Acetoxy-Verbindung 24 reagiert hierbei nicht. Sie wird bei der Aufarbeitung vermutlich zu 5-Hydroxypent-2-enal (21) verseift, das mit der wäßrigen Phase verworfen wird. Die 4-Acetoxy-Verbindung 25 reagiert entsprechend den oben beschriebenen Glycalen unter Acetat-Abspaltung und Allylverschiebung zum Phosphonat 22, das rein aus der organischen Phase isoliert werden kann.

Anomeren-Verhältnis der Glycopyranosylphosphonate. Diskussion des Mechanismus der Allylumlagerung (S_N1-Typ)

Nachdem von allen 2-Enopyranosylphosphonaten eine Isolierung der reinen α und β -Form möglich war, ließ sich eine entsprechende Zuordnung der Anomeren durchführen. Hierfür wurden einerseits die optischen Drehungen herangezogen, die in Tab. 1 zusammengefaßt sind. Eine Abweichung von den *Hudson*schen Isorotationsregeln¹⁴) wird nicht beobachtet, da die Phosphonogruppe in der Nähe des chiralen Zentrums am C-1 keinen langwelligen Chromophor enthält, der die ORD-Kurve im sichtbaren Bereich entscheidend ändern könnte. Die gefundenen Drehwerte für α - und β -Formen stehen in guter Übereinstimmung mit den bisher bekannten

¹³⁾ C. D. Hurds und O. E. Edwards, J. Org. Chem. 19, 1319 (1954).

¹⁴⁾ C. S. Hudson, J. Amer. Chem. Soc. **31**, 66 (1909).

Reihe	Verbindung	[α]D
α -D-erythro	3a	-* 79.4*
β -D-erythro	6a	4.8 °
a-D-threo	9a	- 116.6°
β-v-threo	12 a	- 284.0°
a-D-glycero	14	54.7°
β-D-glycero	16	$+ 206.0^{\circ}$
a-L-glycero	18	- 67.0°
B-L-glycero	19	196.0 °

Tab. 1. Spezifische Drehungen der 2-Enopyranosylphosphonate in Chloroform

Werten der anomeren Glycoside der 2-Enopyranosen ^{5,7,15}). Alle Zuordnungen wurden durch Analyse der ¹H-NMR-Spektren gestützt. Hierfür war jeweils eine Konformationsanalyse der in den 2-Enopyranosylphosphonaten vorliegenden Halbsesselform notwendig (s. unten).

Die gegebene Zuordnung erlaubte nun eine exakte gaschromatographische Bestimmung der Gesamtausbeute und vor allem des Anomeren-Verhältnisses der 2-Enopyranosylphosphonate bei allen Reaktionsansätzen. Die ermittelten Werte sind in Tab. 2 gegenübergestellt. In der Tab. 2 sind ebenfalls die Ausbeuten der durch Schichtehromatographie isolierten α - und β -Formen und das sich daraus ergebende Isomeren-Verhältnis angegeben.

Als wichtigstes Ergebnis kann man der Tab. 2 entnehmen, daß bei der Darstellung des D-erythro-2-Enopyranosylphosphonats das Verhältnis von α -Form **3a** zu β -Form **6a** innerhalb der Meßgenauigkeit der Bestimmung voll identisch ist (35:65), ganz gleich ob man von der D-arabino-Verbindung **2** oder der D-ribo-Verbindung **5** ausgeht. Das Anomeren-Verhältnis ist offenbar völlig unabhängig von der Anordnung der austretenden Acetoxygruppe, die in **2** quasiäquatorial, in **5** dagegen quasiaxial angeordnet ist. Ganz entsprechend ist auch das erhaltene Anomeren-Verhältnis der D-threo-2-Enopyranosylphosphonate (α -Form **9a** zu β -Form **12a** wie 25:75) praktisch völlig identisch, gleichgültig, ob man von der D-lyxo-Verbindung **8** oder der D-xylo-Verbindung **11** ausgeht. Ein gleiches Ergebnis ist in der Pentose-Reihe zu beobachten. Auch hier findet man für das Anomeren-Verhältnis der erhaltenen Phosphonate α -Form **14** zu β -Form **16** (35:65) einen entsprechenden Wert, wenn man sowohl von der D-erythro-Verbindung **15** wie von der D-threo-Verbindung **13** ausgeht. Beim Einsatz der L-erythro-Verbindung **17** ist ebenfalls ein ähnliches Anomeren-Verhältnis festzustellen.

Die sehr gute Übereinstimmung der Anomeren-Verhältnisse bei jeweils am C-3 unterschiedlich substituierten Ausgangssubstanzen ist bemerkenswert und läßt einen Einblick in den Ablauf der Reaktion zu. Eine der Ursachen für die stets gleiche Anomeren-Verteilung könnte eine nachträgliche Anomerisierung von α - bzw. β -Form unter den Reaktionsbedingungen sein. Um diese Möglichkeit auszuschließen, wurden

¹⁵⁾ R. U. Lemieux, E. Fraga und K. A. Watanabe, Can. J. Chem. 46, 61 (1968); K. A. Watanabe, R. S. Goody und J. J. Fox, Tetrahedron 26, 3883 (1970); K. Bock, I. Lundt und C. Pedersen, Acta Chem. Scand. 23, 2083 (1969).

ab. 2. Gaschromatographisch (GC) und präparativ-schichtchromatographisch (PSC) ermittelte und erhaltene Ausbcuten und Anomerenverhält-	nisse der 2-Enopyranosylphosphonate
Та	

		17-7 IAN ASSITT				
Verbindung	Reihe	Gesamtausb. nach GC in %	Anomerenverhältnis nach GC α: β-Form (%)	Ausbeuten 1 &-Form (%)	nach PSC an β-Form (%)	Anomeren- verhältnis nach PSC α: β-Form (%)
3a + 6a	D-erythro aus 2	88.0	35.3:64.7 (ca. 1:2)	9.3	17.3	35:65
3a + 6a	D-erythro aus 5	57.0	35.2: 64.8 (ca. 1: 2))	ı	**
$9a \pm 12a$	D-three aus 8	68.0	25.8: 74.2 (ca. 1: 3)	9.8	22.8	30:70
9a + 12a	D-threo aus 11	73.0	25.2:74.8 (ca. 1:3)	I	1	I
14 + 16	D-glycero aus 13	64.0	36.0: 64.0 (ca. 1:2)	5.9	13.8	30:70
14 + 16	D-glycero aus 15	74.0	34.5:65.5 (ca. 1:2)	12.8	24.8	34:66
18 + 19	L-glycero aus 17	71.5	29.0: 71.0 (ca. 1: 2)	9.4	17.5	35:65

alle reinen α - und β -Anomeren der D-*erythro*-, D-*threo*-, D-*glycero*- und der L-*glycero*-Reihe: **3a**, **6a**, **9a**, **12a**, **14**, **16**, **18** und **19** Anomerisierungsversuchen unterworfen. Die Verbindungen wurden hierzu in Dimethylphosphit mit Bortrifluorid-Ätherat behandelt und wie bei der Darstellung aufgearbeitet. Ferner wurden sie in siedendem Toluol und siedendem Nitromethan erhitzt. Die gaschromatographischen, dünnschichtchromatographischen und NMR-spektroskopischen Untersuchungen der Reaktionsansätze ergaben, daß in keinem Fall eine Umlagerung von α -Form zur β -Form oder umgekehrt beobachtet werden kann. Auch eine Epimerisierung zu Verbindungen vom Typ des 3-Phosphonats **26** läßt sich nicht nachweisen. Derartige $1 \rightarrow 3$ -Umlagerungen finden z. B. bei Nucleosid-2-enopyranosen unter dem Einfluß einer Bortrifluorid-Katalyse relativ leicht statt. Man beobachtet hierbei eine Wanderung der Nucleosidbase vom C-1 zum C-3^{9,16}. Die obigen Versuche zeigen jedoch deutlich, daß die Phosphorbindung zum C-1 in den 2-Enopyranosylphosphonaten außerordentlich stabil ist und unter den angegebenen Bedingungen nicht gelöst werden kann.

Die $S_N 2'$ -Reaktion, die an einer Reihe von Cyclohexen-Derivaten intensiv studiert worden ist¹⁷⁾, ist nach Befunden von *Stork* und *White*¹⁸⁾ u.a. ein *cis*-Prozeß, das heißt, das angreifende Nucleophil tritt von der gleichen Seite in ein cyclisches System ein, an der die Austrittsgruppe gebunden war. Wenn auch der $S_N 2'$ -Mechanismus kürzlich einer kritischen Betrachtung unterzogen wurde¹⁹⁾, so dürfte der stereochemische

¹⁹⁾ F. G. Bordwell, Accounts Chem. Res. 3, 281 (1970).

¹⁶⁾ M. Fuertes, G. Garcia-Muñoz, R. Madroñero, M. Stud und M. Rico, Tetrahedron 26, 4823 (1970).

¹⁷⁾ P. B. D. de la Mare in Molecular Rearrangements, Herausgeber: P. de Mayo, S. 27 ff., Interscience Publ., New York 1963.

¹⁸⁾ G. Stork und W. N. White, J. Amer. Chem. Soc. 78, 4609 (1956).

Ablauf als *cis*-Prozeß durch die vorliegenden Experimente hinreichend belegt sein. Die Befunde bei der Darstellung der 2-Enopyranosylphosphonate, daß das Anomeren-Verhältnis unabhängig von der Stellung der Austrittsgruppe am C-3 ist, sind somit mit einem $S_N 2'$ -Mechanismus nicht vereinbar. Aber auch ein Prozeß, bei dem durch gerichtete Ionenpaare eine stereochemische Steuerung des Produktverhältnisses erfolgt ²⁰, ist kaum denkbar. Die Ergebnisse lassen sich am besten erklären, wenn man einen Reaktionsverlauf annimmt, der weitgehend nach einem $S_N 1$ -Typ mit Umlagerung¹⁹ abläuft. Als gemeinsames Zwischenprodukt würde man für die jeweiligen Reaktionspaare ein mesomeres Kation der Form **27** annehmen. Es ist jedoch zu bemerken, daß die Form **28**^{6, 21} hieran einen hohen Anteil haben sollte, da bei den hier ausgeführten Reaktionen nur ein Angriff des Nucleophils am C-1 und nicht am C-3 beobachtet wird.

Das Anomeren-Verhältnis bei Eintritt des Nucleophils könnte dann durch sterische Effekte beeinflußt werden. In allen Fällen wurde eine bevorzugte Bildung der β-Form beobachtet. Die nachstehenden Konformationsanalysen haben ergeben, daß zumindest alle Hexose-Derivate der 2-Enopyranosylphosphonate eine ${}^{5}H_{0}$ -Konformation bevorzugen, in der die große Phosphonat-Gruppe in der β -Form quasiäquatorial, in der a-Form dagegen quasiaxial angeordnet ist. Weiterhin kann eine Beeinflussung des Anomeren-Verhältnisses durch den anomeren Effekt erwartet werden. Die Phosphonat-Gruppe sollte ähnlich wie stickstoffhaltige Substituenten²²⁾ und abweichend vom Sauerstoff nur einen schwachen anomeren Effekt aufweisen. Dies würde bedeuten, daß bei der ⁵H_O-Konformation keine Begünstigung der α-Form durch den anomeren Effekt auftreten sollte, was mit dem gefundenen Überwiegen der β-Form gleichfalls übereinstimmt. Bei der entsprechenden Darstellung der Methylglycoside der 2-Enopyranosen findet man nach Ferrier⁸⁾ in der Tat, vermutlich durch den beim Sauerstoff jetzt wirksamen erheblichen anomeren Effekt, ein Überwiegen der α-Form im erhaltenen Anomeren-Gemisch. Bei der Gewinnung von Nucleosiden der 2-Enopyranosen, z.B. des Adenins, überwiegt nach Shuman et al.²³⁾ umgekehrt der Anteil der β -Form noch mehr als bei den 2-Enopyranosylphosphonaten. Hier wirken sterische Einflüsse und das Fehlen eines anomeren Effektes noch stärker im gleichen Sinne.

Reaktionen und Verseifung der Glycopyranosylphosphonate über Trimethylsilylester

Die 2-Enopyranosylphosphonate lassen sich leicht katalytisch zu den 2,3-Didesoxyzuckern hydrieren. So liefert die Hydrierung des kristallinen **6a** das Dimethyl-(4,6-di-*O*-acetyl-2,3-didesoxy- β -D-*erythro*-hexopyranosyl)phosphonat (**29**). Durch Hydrierung mit D₂ läßt sich ein **29** entsprechendes 2,3-Dideuterio-Derivat gewinnen. Eine Abspaltung der Acetyl-Gruppen der 2-Enopyranosylphosphonate ist nach

²⁰⁾ R. A. Sneen, Accounts Chem. Res. 6, 46 (1973).

²¹⁾ R. J. Ferrier, Advan. Carbohyd. Chem. 20, 67 (1965).

²²⁾ H. Paulsen, Z. Györgydéak und M. Friedmann, in Vorbereitung.

²³⁾ E. E. Leutzinger, T. Meguro, L. B. Townsend, D. A. Shuman, M. P. Schweizer, C. M. Stewart und R. K. Robins, J. Org. Chem. 37, 3695 (1972).

Zémplen in guten Ausbeuten leicht möglich. Aus 6a erhält man das Phosphonat 30. Die kristalline *threo*-Verbindung 12a ist entsprechend mit katalytischen Mengen Natriummethylat verseifbar.

Die Spaltung von Phosphonsäure-alkylester-Gruppen erfolgt normalerweise erst mit konz. Salzsäure oder Bromwasserstoffsäure unter Bedingungen, unter denen die 2-Enopyranosylphosphonate vollständig zersetzt werden. Es wurde daher zur Gewinnung der freien Phosphonsäuren ein unter milden Bedingungen ablaufendes Umesterungsverfahren²⁴⁾ eingesetzt. Danach wird z. B. das Dimethyl-phosphonat **6a** mit Trimethylchlorsilan erhitzt, bis eine Umesterung in das Bistrimethylsilyl-phosphonat **31** unter Methylchlorid-Abspaltung vollzogen ist. Der Bistrimethylsilylester **31** kann dann mit Wasser bei Raumtemperatür unter mildesten Bedingungen zur freien, stark sauren Phosphonsäure **32** gespalten werden. Die alkalische Abspaltung der Acetylgruppen von **32** liefert die vollständig entblockierte (2,3-Didesoxy- β -D-*erythro*-hex-2enopyranosyl)phosphonsäure (**33**), die ein kristallines Bariumsalz sowie ein kristallines Monodicyclohexylammoniumsalz bildet. Aus der D-*threo*-Verbindung **12a** lassen sich in einer entsprechenden Reaktionsfolge über den Bistrimethylsilylester **34** die freien Phosphonsäuren **35** und **36** gewinnen, von denen die letztere ein kristallines hygroskopisches Bariumsalz liefert.

Es wurde ferner versucht, die 2-Enopyranosylphosphonate in entsprechende 2,3-Epoxide oder 2,3-Diole zu überführen. Alle angewandten möglichen Persäuren sowie H_2O_2 in alkalischer Lösung und mit Wolframat- oder Selendioxid-Zusatz ²⁴⁾ *R. Rabinowitz*, J. Org. Chem. **28**, 2975 (1963).

führten zu keiner Reaktion. Mit Osmiumtetroxid wird zwar ein Addukt gebildet, aus dem aber kein *cis*-Diol, sondern unverändertes Ausgangsmaterial zurückgewonnen wird. Mit KMnO₄, unter vielfach variierten Bedingungen, erfolgt entweder keine Reaktion oder Abbau des Moleküls. Auch bei der Addition von Brom entsteht kein Dibromid, sondern unter HBr-Abspaltung ein komplexes Reaktionsgemisch. Die Ursachen für die ungewöhnliche Resistenz der 2,3-Doppelbindung dieser Phosphonate sind zur Zeit noch unklar.

Strukturbeweis der Glycopyranosylphosphonate durch ¹H-NMR- und ³¹P-NMR-Spektren. Konformationsanalysen. ${}^{5}J_{H,P}$ -Homoallylkopplungen

Die Struktur der Glycopyranosylphosphonate folgt aus ¹H-NMR- und ³¹P-NMR-Spektren sowie den Massenspektren. Die chemischen Verschiebungen der Phosphorsignale aus den ³¹P-NMR-Spektren sind in Tab. 3 zusammengefaßt. Es ist zu ersehen, daß alle Signale mit $\sim \delta -20$ ppm im charakteristischen Phosphonatgebiet liegen. Einfache 2-Alkenphosphonate liefern ein Signal bei $\delta -27$ bis -28 ppm²⁵⁾. Die Verschiebung des Phosphorsignals um 7-8 ppm zu höherem Feld bei den Glycopyranosylphosphonaten entspricht der Erwartung, da der zum Phosphor α -ständige Sauerstoff des Pyranoseringes die Elektronendichte am Phosphor entsprechend verändert. Der gleiche Effekt wurde auch an Modellsubstanzen gefunden. So liefert (1-Methoxyvinyl)phosphonsäure-dimethylester mit α -ständiger Alkoxygruppe ein Signal bei $\delta -18.6$ ppm²⁶⁾, während einfache 1-Alkenphosphonate um etwa 6 ppm bei niedrigerem Feld bei etwa $\delta -24$ ppm absorbieren ²⁷⁾.

Verbindung		δ ³¹ P (ppm)
α -D-erythro	3a	-19.7 ± 1
p-D-eryinro α-D-threo	6a 9a	-20.8 ± 1 -19.5 ±1
β-D-threo	12a	-20.5 ± 1
α-D-glycero	14	-20.2 ± 1
p-D-giycero Dihydropyran-Derivat	16 22	-21.3 ± 1 -22.5 ± 1

Tab. 3. Chemische Verschiebung der ³¹P-Signale der 2-Enopyranosylphosphonate, bezogen auf externen Standard P_4O_6 , $\delta = -112.3$ ppm

Die ¹H-NMR-Spektren der 2-Enopyranosylphosphonate lassen charakteristische Signalgruppen erkennen, wie es am Beispiel des Spektrums der D-*erythro*-Verbindung **3a** in der Abbild. wiedergegeben ist (s. auch Tab. 4). Das komplexe Zwei-Protonen-Signal bei $\delta \sim 6$ ppm ist den olefinischen Protonen 2-H und 3-H zuzuordnen, die unter sich ein AB-System bilden, das aber durch weitere Kopplungen vielfältig aufgespalten ist. Das Signal von 4-H erscheint gut getrennt bei δ 5.30 ppm als komplexes Multiplett, das Aufspaltungen durch Vicinal-, Allyl- und Homoallylkopplungen

²⁵⁾ V. Mark in Mechanisms of Molecular Migrations, Bd. 2, Herausgeber: B. S. Thyagarajan, S. 319 ff., Interscience Publ., New York, N.Y. 1969.

²⁶⁾ H. Paulsen und J. Thiem, unveröffentlicht.

²⁷⁾ B. I. Ionin und A. A. Petrov, J. Gen. Chem. USSR 33, 426 (1963) [C. A. 59, 656 d (1963)].

aufweist. Das anomere Proton 1-H ist durch die sehr große geminale Kopplung mit dem Phosphor $J_{1,P}$ 17.4 bis 19.5 Hz in zwei Signalgruppen von je einem halben Proton aufgespalten und liegt bei δ 4.78 ppm. Dieser Wert liegt bei höherem Feld als 1-H bei Methylglycosiden der 2-Enopyranosen, für die 1-H bei δ 5.0–5.4 ppm gefunden wird¹⁵⁾. Hierin spiegelt sich deutlich die gegenüber dem Sauerstoff geringere Wirkung des Phosphors wider, die Abschirmung des anomeren Protons herabzusetzen, wie es bei einer Bindung des Phosphors an C-1 zu erwarten ist. Alle aus dem ¹H-NMR-Spektrum abgeleiteten Befunde sind unvereinbar mit der Struktur einer 1-Eno-3-dialkylphosphonopyranose **26** (1-H müßte hier, wie in Glycalen⁹⁾, bei δ 6.7 ppm, 2-H bei δ 4.6 ppm auftreten) und sprechen eindeutig für ein 2-Enopyranosylphosphonat.

100-MHz-1H-NMR-Spektrum von Dimethyl-(4,6-di-O-acetyl-2,3-didesoxy-α-D-erythro-hex-2-enopyranosyl)phosphonat (3a) in CDCl₃, innerer Standard TMS. Links oben: Dehnung der Signale von 4-H und 1-H

Für die 2-Enopyranosylphosphonate sind, da die Atome C-1, C-2, C-3 und C-4 in einer Ebene stehen müssen, Halbsesselkonformationen zu erwarten. Hierbei können die ${}^{O}H_{5}(D)$ -Konformation 37 oder die ${}^{5}H_{O}(D)$ -Konformation 38 eingenommen werden. In den Konformationen stehen die Substituenten R⁵ axial oder äquatorial, die Substituenten R¹, R², R³ und R⁴ quasiaxial oder quasiäquatorial.

In Tab. 5 sind die nach der ersten Ordnung zu ermittelnden Kopplungskonstanten aus den Spektren der 2-Enopyranosylphosphonate zusammengestellt. Die Werte wurden im wesentlichen dem 1-H- und dem 4-H-Signal entnommen. Das 1-H liefert ein 16-Liniensignal; für 4-H sind bei Hexosen maximal 32, bei Pentosen maximal 64 Linien zu erwarten. Alle Zuordnungen wurden durch zahlreiche Doppel- und Tripelresonanzexperimente abgesichert. Es war auf diesem Wege möglich, deutlich

	Tab. 4. Chemi	ische Versch.	iebung (¹ H-N.	MR-Signale) d	ier 2-Enopyranosy	lphosphona	te in CDCl ₃ (ð in ppm	•
Reihe	1-H	2-, 3-H	4-H	5-, 5′-H	5-H, 6-, 6′-H	POCH	2-(H)e)	OAc	$P - (OCH_2) - CH_3$
a-d-erythro 3a a)	4.78 (16) ^{c)} 8.0 ^{d)}	5.95 m	5.30 (16)c) 20.5 d)	ĥ	4.24–4.35 m	3.80 d, ∆ 1.5,	3.82 d J _{HP} 10.5	2.05	1
α-D-erythro 3b ^{b)}	4.65 m 8.0	5.97 m	5.32 m 20.0	1	∼4.3 m	4.19 quin, ∆ 1.0,	4.20 quin J _{HP} 8.0	2.06	1.33 t J _{HH} 7.0
B-D-erythro 6a ^{a)}	4.60 (~4) 6.5	5.96 m	5.29 (~8) 16.5	١	4.19-4.35 m	3.77 d, ∆ 7.5,	3.85 d J _{HP} 10.5	2.04	i .
β-D-erythro 6lb ^{b)}	4.62 m 6.0	6.00 m	5.25 m 16.0	P er ma	∼4.3 m	4.16 (8), ∆ 4.0,	4.25 (8) J _{HP} 8.0	2.06	1.37 t J _{HH} 7.0
α-D- <i>threo</i> 9a ^{a)}	4.65 (16) 6.0	6.16 m	5.08 (16) 10.6	1	3.9-4.2 m	3.79 d, ∆ 2.7,	3.82 d J _{HP} 10.5	2.03	i
g-D-threo 12aa)	$4.68 \ (\sim 8)$ 6.0	6.14 m	5.07 (~6) 14.0	1	4.16-4.6 m	3.77 d, ∆ 8.0,	3.85 d J _{HP} 10.5	2.01, 2.03	١
3-D-threo 12ba)	4.66 m 5.0	6.18 m	5.12 m 13.5	1	4.3-4.6 m	4.16 (8), Δ 8.0,	4.25(8) $J_{ m HP}$ 8.0	2.04, 2.06	1.36 t JHH 7.0
α-D-glycero 14a)	4.52 (8) 6.5	6.08 m	5.01 (6) 15.0	3.8-4.2 m	\	3.77 d, ∆ 0.8,	3.78 d J _{HP} 10.5	2.06	1
β-D-glycero 16 ^{a)}	4.58 (8) 4.5	6.08 m	5.08 (12) 17.5	4.34.4 m	ŗ	3.78 d, ∆ 3.0,	3.81 d J _{HP} 10.5	2.04	
а-L-glycero 18b)	4.57 m 6.5	6.15 m	5.10 m 15.0	4.0-4.4 m	ļ	3.75 d, ∆ 1.0,	3.76 d J _{HP} 10.5	2.07	١
(3-L-glycero 19b)	4.57 m 4.5	6.14 m	5.18 m 17.0	4.3-4.5 m	ł	3.81 d, Δ 2.0,	3.83 d JHP 10.5	2.06	
DHPf) 22 ^{b)}	4.58 m 14.0	5.97 m	2.72 m 28.0	4.0-4.2 m		3.77 d, ∆ 3.5,	3.80 d J _{HP} 10.5	1	1
a) 100 MHz-Spektrum b) 60 MHz-Spektrum. c) Obere Angabe: Che	m. Verschiebung, ¹	Multiplizität in	Klammern,	0 0 0 0 0 0 0 0	ntere Angabe: Basisbi .: Unterschied der Mu vihydropyranderivat 2.	reite des halber Iltipletts in Hz. 2 wird hier wie	1 !-H-Signals bz eine Pyranose b	w. des gan eziffert.	zen 4-H-Signals in Hz.

zwischen Protonen-Protonen- und Protonen-Phosphor-Kopplungen zu differenzieren und die Fehler, die durch eine Analyse erster Ordnung entstehen, in Grenzen zu halten. 2-H und 3-H bilden ein stark koppelndes System mit einer *cis*-Kopplungskonstante von etwa 10 Hz, das durch zahlreiche weitere Kopplungen aufgespalten ist, so daß eine einfache Analyse nicht möglich ist. Das Phosphorsignal des ³¹P-NMR-Spektrums enthält ebenfalls zahlreiche Kopplungen und stellt daher nur ein breites, nicht aufgelöstes Multiplett dar.

Für die Abschätzung der bevorzugten Halbsessel-Konformation 37 oder 38 aus den Kopplungskonstanten der Tab. 5 sind die modifizierte *Karplus*-Beziehung²⁸⁾, die Beziehung von *Garbisch* für Vicinalkopplungen mit ungesättigtem C-Atom²⁹⁾ sowie die Winkelabhängigkeiten der Allyl-²⁹⁾ und Homoallylkopplung¹⁵⁾ miteinander zu korrelieren und abzuwägen. Für das D-*erythro*-Phosphonat-System 3a und 6a lassen sich folgende Aussagen machen: Bei beiden Verbindungen wird für $J_{4,5}$ eine große Vicinalkopplung von 9.5 bzw. 8.0 Hz gefunden. Dies zeigt bereits, daß in beiden Verbindungen die ^OH₅(D)-Konformation 37 stark bevorzugt eingenommen wird, denn nur in dieser Form ist bei axial/quasiaxialer Anordnung der Protonen 5-H und 4-H eine so hohe Kopplungskonstante zu erwarten. In Übereinstimmung mit dieser Konformation ist die Vicinalkopplung $J_{3,4} \sim 0$ klein (Diederwinkel $\sim 90^{\circ}$) und die Allylkopplung $J_{2,4}$ 2.8 Hz verhältnismäßig groß (4-H steht außerhalb der Doppelbindungsebene). Wie zu erwarten, ist für die α-Form 3a $J_{1,2}$ 2.8 Hz größer als für die β-Form 6a mit $J_{1,2}$ 1.0 Hz, auch wenn der Unterschied hier nicht gerade so überzeugend ist.

Bemerkenswert gut läßt sich dagegen die Homoallylkopplung $J_{1,4}$ korrelieren. Für die β -Form, bei der in der ^OH₅(D)-Konformation 1-H und 4-H quasiaxial außerhalb der Ebene der Doppelbindung stehen, wird der hohe Wert ${}^{5}J_{1,4}$ 2.3 Hz gefunden. Für die α -Form, bei der nur 4-H quasiaxial steht, ergibt sich ein signifikant

²⁸⁾ R. J. Abraham, L. D. Hall, L. Hough und K. A. McLauchlan, J. Chem. Soc. 1962, 3699.

²⁹⁾ E. W. Garbisch, J. Amer. Chem. Soc. 86, 5561 (1964).

Reihe $J_{1,2}$ $J_{1,3}$ $J_{1,4}$ $J_{1,P}$ $J_{2,3}$ α -D-erythro 3a 2.8 -2.0 1.3 17.4 ~ 10 β -D-erythro 6a 1.0 2.3 19.5 ~ 10 α -D-threo 9a 1.8 -0.6 1.0 17.6 ~ 10 β -D-threo 12a 1.3 -1.2 1.5 19.5 ~ 10	•		
α -D-erythro3a2.8-2.01.317.4 ~ 10 β -D-erythro6a1.02.319.5 ~ 10 α -D-threo9a1.8-0.61.017.6 ~ 10 β -D-threo12a1.3-1.21.519.5 ~ 10	$J_{2,3}$ $J_{2,4}$	$J_{3,4}$ $J_{4,5}$ $J_{4,}$	· J4,P
β -D-erythro 6a 1.0 2.3 19.5 ~ 10 α -D-threo 9a 1.8 -0.6 1.0 17.6 ~ 10 β -D-threo 12a 1.3 -1.2 1.5 19.5 ~ 10	.4 ~10 -2.8	~0 9.5	5.3
α -D-three 9a 1.8 -0.6 1.0 17.6 ~ 10 β -D-three 12a 1.3 -1.2 1.5 19.5 ~ 10	.5 ~10	~8.0	
β -D-three 12a 1.3 -1.2 1.5 19.5 ~ 10	$\sim 10 < 0.2$	4.0 2.2	3.6
	.5 ~10 ~0	4.0 2.0	2.0
α -D-glycero 14 1.3 -1.2 1.5 18.0 ~ 10	.0 ~10	~6.0 ∑≃ 5.5	~ 2.5
β -D-glycero 16 ^{a)} 1.0 0 1.7 18.4 ~ 10	.4 ~10	3.6 3.6	
DHPb) 22 $14.0 \sim 10$.0 ~10		

kleinerer Wert von ${}^{5}J_{1,4}$ 1.3 Hz. Auch für die ${}^{5}J_{H,P}$ -Homoallylkopplung scheint eine ähnliche Winkelabhängigkeit wie für die ${}^{5}J_{H,P}$ -Homoallylkopplung zu bestehen. So ergibt sich jetzt umgekehrt in der α -Form, in der 4-H und 1-P quasiaxial angeordnet sind, die sehr große Homoallylkopplung von ${}^{5}J_{4,P}$ 5.3 Hz. Bei allen anderen Anordnungen, bei denen die koppelnden Atome mehr in der Ebene der Doppelbindung stehen, ist diese Kopplung, wie bei der entsprechenden Protonen-Protonen-Kopplung, niedriger. Alle Befunde sprechen somit für eine starke Bevorzugung der ^OH₅(D)-Konformation **37** bei **3a** und **6a**.

Bei den D-*threo*-Phosphonaten **9a** und **12a** findet man für die Kopplung $J_{4,5}$ einen kleinen Wert 2.2 bzw. 2.0 Hz, der mehrdeutig ist, da er mit der ^OH₅(D)- und der ⁵H_O(D)-Konformation vereinbar sein könnte. Der relativ hohe Wert der Vicinalkopplung $J_{3,4}$ 4.0 Hz (kleiner Diederwinkel) spricht dagegen für eine starke Bevorzugung der ^OH₅(D)-Konformation **37**. Hiermit stimmt überein, daß in der α -Form **9a** $J_{1,2}$ 1.8 Hz größer ist als in der β -Form **12a** $J_{1,2}$ 1.3 Hz und umgekehrt die Allylkopplung in der α -Form **9a** mit $J_{1,3}$ 0.6 Hz kleiner ist als in der β -Form **12a** mit $J_{1,3}$ 1.2 Hz. Auch die Homoallylkopplungen sprechen hier eindeutig für eine Bevorzugung der ^OH₅(D)-Konformation **37**. Beim Vorliegen der ⁵H_O(D)-Konformation **38** müßten für die Homoallylkopplungen ⁵ $J_{1,4}$ in der α -Form **9a** und ⁵ $J_{4,P}$ in der β -Form **12a** infolge der jeweiligen diquasiaxialen Anordnung die höchsten Werte gefunden werden. Man findet jedoch für die α -Form **9a** mit ⁵ $J_{1,4}$ 1.0 Hz und die β -Form **12a** mit ⁵ $J_{4,P}$ 2.0 Hz gerade die niedrigsten Werte, wie man es bei einer jeweiligen ^OH₅(D)-Konformation für **9a** und **12a** mit diquasiäquatorialer Anordnung der koppelnden Atome erwarten sollte.

Sehr viel schwieriger sind die Verhältnisse bei den Pentose-Derivaten 14 und 16 zu beurteilen, zumal auch die NMR-Spektren noch komplizierter sind. Die etwa gleichen Werte für $J_{4,5}$ und $J_{4,5'}$ von etwa 3 Hz deuten darauf hin, daß beide Konformationen ${}^{O}H_{5}(D)$ 37 und ${}^{5}H_{O}(D)$ 38 nebeneinander in vergleichbaren Anteilen vorliegen. Die beobachteten Kopplungen wären dann Mittelwerte von beiden Konformationen unter Berücksichtigung ihrer Molanteile. Auch die Homoallylkopplungen ${}^{5}J_{1,4}$ 1.5 bzw. 1.7 Hz und ${}^{5}J_{4,P}$ 2.5 Hz sowie die ähnlichen Kopplungen $J_{1,2}$ 1.3 bzw. 1.0 Hz weisen auf Mittelwertkopplungen hin. Es erscheint verständlich, daß in der Pentose-Reihe bei 14 und 16 beide Konformationen ${}^{O}H_{5}(D)$ 37 und ${}^{5}H_{O}(D)$ 38 eine vergleichbare Stabilität besitzen, da bei ihnen die große CH₂OAc-Gruppe am C-5 fehlt. Bei den Hexose-Derivaten 3a, 6a, 9a und 12a ist in der bevorzugten ${}^{O}H_{5}(D)$ -Konformation 37 die CH₂OAc-Gruppe an C-5 stets äquatorial angeordnet, was wesentlich zur erhöhten Stabilität dieser Konformation bei den Hexose-Verbindungen beitragen sollte.

Massenspektren der Glycopyranosylphosphonate

Mit der angegebenen Struktur der 2-Enopyranosylphosphonate sind ebenfalls ihre Massenspektren in guter Übereinstimmung. Im Schema I sind die Hauptzerfallswege der kristallinen β -D-*erythro*- und β -D-*threo*-Phosphonate **6a** und **12a** zusammengefaßt. Die Spektren wurden bei 70 eV unter Direkteinlaß bei 75 bzw. 90°C gewonnen und unterscheiden sich nur geringfügig in der Intensität der wesentlichen Fragmente.

Als einen Hauptzerfallsweg findet man auch hier, wie bei Glycosiden^{30,31,32)} und Nucleosiden⁹⁾, die Abspaltung des Aglycons als Radikal. Unter Abspaltung der Dimethylphosphonogruppe wird auf diesem Wege das Kation m/e 213 gebildet, das in einer Folge von Essigsäure- und Keten-Eliminierungen in das Kation m/e 111 und unter Formaldehyd-Abspaltung in das Pyrylium-lon m/e 81 übergeht.

Schema 1: Massenspektren bei 70 eV. Relative Intensität: crste Zahl 6a (75°C), zweite Zahl 12a (90°C)

Im Gegensatz zu Glycosiden und Nucleosiden findet man bei den C-I-Phosphonaten mehrere Zerfallswege, die Ionen relativ hoher Intensität aufweisen, bei denen noch das Aglycon, hier der Phosphonatrest, enthalten ist, was darauf hindeutet,

31) A. Rosenthal, Carbohyd. Res. 8, 61 (1968).

³⁰⁾ A. P. Boisselle und N. A. Meinhardt, J. Org. Chem. 27, 1128 (1962).

³²⁾ R. J. Ferrier, N. Vethaviyasar, O. S. Chizov, V. I. Kudentsev und B. M. Zolotarev, Carbohyd. Res. 13, 269 (1970).

daß die C-P-Bindung deutlich schwerer gespalten wird. Die zweifache Essigsäure-Abspaltung aus m/e 322 führt zum Radikalion m/e 202, aus dem erst im Sekundärschritt ein Dimethylphosphono-Radikal zum Ion m/e 93 abgespalten wird. Sogar eine Abtrennung des CH₂OAc-Restes als Radikal ist aus m/e 322 unter C- C-Bindungsspaltung möglich, ohne daß die C-P-Bindung gelöst wird. Hierbei entsteht das Ion m/e 249, das im Folgeschritt unter Keten-Abspaltung und 1,4-Eliminierung von Wasser das phosphonathaltige Pyrylium-Ion m/e 189 bildet. Bemerkenswert ist, daß die Intensität dieses Ions m/e 189 mit der des unsubstituierten Pyrylium-Ions m/e 81 durchaus vergleichbar ist.

Die gleichfalls phosphonathaltigen Produkte der Retrodienspaltung m/e 220 und 178 treten in wesentlich höherer Intensität als bei strukturell verwandten Glycosiden³²⁾ auf. Reine Phosphonatbruchstücke, wie m/e 109, aus dem m/e 79 entsteht³³⁾, werden auch mit hoher Intensität gefunden. Beim Einsatz der kristallinen Derivate **6a** und **12a** läßt sich kein Molekülpeak nachweisen. Wenn man dagegen mit den sirupösen Anomerengemischen **3a** + **6a** bzw. **9a** + **12a** die Messung durchführt, ist ein Molekülpeak m/e 322 und ein M+1-Peak m/e 323 mit geringer Intensität (0.2 bzw. 0.3%) zu beobachten. Dieser Unterschied kann auf apparativen Einflüssen oder auf einer leicht erhöhten Stabilität der α -Form gegenüber der β -Form beruhen.

Im Massenspektrum des α -D-glycero-Phosphonats 14 sind im wesentlichen die im Schema 1 angegebenen Spaltungswege in analoger Weise wiederzufinden. So ergibt das Molekül-Ion m/e 250 (1.6%) unter Abspaltung des Phosphonat-Radikals das Ion m/e 141 (95%) (entspricht m/e 213 in Schema 1), das über m/e 99 (46%) in das Pyrylium-Ion m/e 81 übergeht. Essigsäure-Abspaltung ergibt ein phosphonathaltiges Ion m/e 190 (62%) (entspricht m/e 202 in Schema 1), das ebenfalls sekundär Phosphonat zu m/e 81 abspaltet. Abweichend von den Hexosederivaten findet man beim Pentosederivat 14 einen Fragmentierungsweg (s. Schema 2), der über Keten-Eliminierung zum Radikalion m/e 208 führt, das unter Acetylradikal-Abspaltung das Ion m/e 165 bildet, das in hoher Intensität auftritt. m/e 165 stellt ein protoniertes α -Ketophosphonat dar und besitzt eine hohe Stabilität. Unter Abspaltung von Äthylen und Kohlenoxid zerfällt es zum Dimethylphosphono-Kation m/e 109 (70%) und

Schema 2: Massenspektrum bei 70 cV von 14 (150°C)

33) J. G. Pritchard, Org. Mass Spectrom. 3, 163 (1970).

unter anschließender Formaldehyd-Abspaltung zum Kation m/e 79 (51%). Dieser Spaltungsweg wird auch bei Modellsubstanzen vom Typ des 2-(Dimethylphosphono)-tetrahydropyrans und -furans beobachtet²⁶⁾.

Bemerkenswert hoch ist im Spektrum von 14 der M+1-Peak m/e 251 (2.4%). Es finden sich auch eine Reihe von Fragmenten, die sich von dieser protonierten Form von 14 ableiten. So treten die Produkte der Retrodienspaltung mit m/e 221 (19%) und m/e 179 (24%) jeweils mit einer um eine Einheit höheren Masse als im Schema 1 auf. Über die relativ leichte Addition eines Wasserstoffs wurde bereits bei massenspektroskopischen Messungen von Phosphaten berichtet. Offenbar tritt die Wasserstoffaddition besonders leicht ein, wenn die Substanzen als Sirupe gemessen werden, die in der Regel Restmengen von Lösungsmitteln enthalten. Die Pentose 14 liegt nur als Sirup vor. Mißt man bei den Hexosen das sirupöse Anomerengemisch 3a + 6a oder 9a + 12a, so findet man mit mindestens der gleichen Intensität des Molekülpeaks deutlich den M+1-Peak. Die kristallinen Verbindungen 9a oder 12aweisen keinen Molekülpeak und keinen M+1-Peak auf.

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für die Unterstützung der Untersuchungen.

Experimenteller Teil

Alle Reaktionen wurden dünnschichtchromatographisch an Kieselgel GF₂₅₄ (Merck) oder Fertigplatten GF₂₅₄ auf Aluminiumfolie (Merck) verfolgt, Laufmittel: Äther, Äther/Petroläther (1:1), Chloroform/Äthanol (20:1), Benzol/Äthanol/Wasser (50:45:5), Pyridin/Essigester/Wasser/Eisessig (5:5:3:1), Pyridin/Eisessig/Wasser (6:3:3). Anfärbung mit 2%, N,N-Dimethyl-p-phenylendiamin · 2 HCl in 20 proz. Schwefelsäure und 2 proz. natriumcarbonatalkalischer Kaliumpermanganatlösung. Säulenchromatographie an Kieselgel nach Herrmann standardisiert (0.15-0.20 mesh). Präparative Dickschichtchromatographie (PSC) an PF₂₅₄ (Merck) bei 1.5 bis 2 mm Schichtdicke auf 20×20 , 20×90 - und 30×90 -cm²-Platten. Optische Drehung: Perkin-Elmer Polarimeter 141, Schichtdicke 10 cm. 1R: Perkin-Elmer, Modell 137 und 141 als KBr-Preßling oder Film. UV: Perkin-Elmer, Modell 141 UV. Gaschromatographie: Perkin-Elmer F 20; 2 m gepackte Glassäule mit 2.5% Nitrilsilicogummi auf Chromosorb G (XE 60). ¹H-NMR: Varian T 60 und HA 100, Spinentkopplung nach der "frequencysweep"-Methode bei 60 und 100 MHz. ³¹P-NMR: Varian HA 60 bei 24.3 MHz, externer Standard P₄O₆ (-112.3 ppm) oder 85 proz. Phosphorsäure (0 ppm). Massenspektren: Varian MAT CH-4 und SM-IB bei 70 eV, Einlaß direkt oder über HTE bei 150°C.

Dimethyl-(4,6-di-O-acetyl-2,3-didesoxy- α - und - β -D-erythro-hex-2-enopyranosyl)phosphonat (**3a** und **6a**)

a) 5.0 g (19.4 mmol) 3,4,6-Tri-O-acetyl-1,2-didesoxy-D-arabino-hex-1-enopyranose (3,4,6-Tri-O-acetyl-D-glucal) (2) werden mit 50 ml Dimethylphosphit und 2 ml Bortrifluorid-Ätherat 2 h auf 60°C erwärmt. Die kalte Reaktionsmischung wird in 200 ml Chloroform aufgenommen, die Lösung mit Natriumhydrogencarbonatlösung und mit Wasser gewaschen, über CaCl₂ getrocknet, eingeengt und i. Hochvak. von Dimethylphosphit befreit. Erneutes Aufnehmen in Äthanol und Klären mit Aktivkohle läßt nach Filtrieren und Einengen 4.3 g schwach gelbliches Rohgemisch zurück.

b) Je 500 mg davon worden auf zwei PSC-Platten $(30 \times 90 \text{ cm}^2)$ aufgetragen und durch fünfmalige Entwicklung mit Äther als Laufmittel in die Anomeren aufgetrennt. Die mit

alkalischer Permanganatlösung anfärbbaren Zonen I und II werden von den Platten gehoben und mehrfach mit heißem Methanol extrahiert, eingeengt, in Chloroform aufgenommen, filtriert und erneut eingeengt. Das Eluat der Zone I ergibt einen farblosen Sirup, der sofort aus Äther kristallisiert. 260 mg (17%, bezogen auf 2) 6a. Schmp. 79-81°C, $[\alpha]_{D}^{20} = -4.8^{\circ}$ (c = 1.03 in CHCl₃).

IR (KBr): 1740 (C=O, OAc), 1635 (C=C), 1245 (P=O), 1045 cm⁻¹ (P-O-C). – UV (Methanol): $\lambda_{max} = 216$ nm; UV (Wasser): $\lambda_{max} = 204$ nm. – ¹H-NMR (100 MHz, CDCl₃): 1-H δ 4.60 ppm ~q, 2-H und 3-H 5.96 m, 4-H 5.29 ~okt, 5-H, 6-H und 6'-H 4.19 bis 4.35 m, POCH₃ 3.77 d und 3.85 d, OAc 2.04 s; $J_{1,2}$ 1.0, ${}^{5}J_{1,4}$ 2.3, ${}^{2}J_{1,P}$ 19.5, $J_{2,3}$ ~10, $J_{4,5}$ ~8.0, $\Delta\delta$ CH₃ 7.5, J_{HCOP} 10.5 Hz. – ³¹P-NMR: δ –20.8 ± 1 ppm.

C12H19O8P (322.3) Ber, C 44.73 H 5.94 P 9.61 Gef. C 44.87 H 6.12 P 9.74

Das Eluat der Zone II ergibt einen farblosen Sirup. 150 mg (10%, bezogen auf 2) 3a. $[\alpha]_{20}^{20} = +79.4^{\circ}$ (c = 1.27 in CHCl₃).

¹H-NMR (100 MHz, CDCl₃): 1-H δ 4.78 ppm, 16-Liniensignal, 2-H und 3-H 5.95 m, 4-H 5.30, 16-Liniensignal, 5-H, 6-H und 6'-H 4.24 bis 4.35 m, POCH₃ 3.80 d und 3.82 d, OAc 2.05 s; $J_{1,2}$ 2.8, ${}^{4}J_{1,3}$ -2.0, ${}^{5}J_{1,4}$ 1.3, ${}^{2}J_{1,P}$ 17.4, $J_{2,3}$ ~10, ${}^{4}J_{2,4}$ -2.8, $J_{3,4}$ ~0, $J_{4,5}$ 9.5, ${}^{5}J_{4,P}$ 5.3, $\Delta\delta$ CH₃ 1.5, J_{HCOP} 10.5 Hz. - 31 P-NMR: δ -19.7 \pm 1 ppm.

C₁₂H₁₉O₈P (322.3) Ber. C 44.73 H 5.94 Gef. C 44.05 H 5.85

c) Bei der Trennung von 3.0 g Rohprodukt auf fünf PSC-Platten $(20 \times 90 \text{ cm}^2)$ gewinnt man durch fünffache Entwicklung mit Äther wegen der verminderten Laufstrecke neben den reinen Anomeren auch eine Mischfraktion. Ausb. 750 mg 6a (13%), 400 mg 3a + 6a (9%) und 200 mg 3a (5%, bezogen auf 2).

d) Gaschromatographische Bestimmung der Ausbeuten, XE 60 bei 230°C: Im Rohgemisch liegen 88% Anomerengemisch 3a + 6a neben 12% Nebenprodukten vor. Verhältnis der Retentionszeiten: t_{6a} : $t_{3a} = 1:1.11$. Verhältnis der Anomeren: 64.7% 6a und 35.3% 3a.

e) Bei einem Ansatz von 50 g 2, 200 ml Dimethylphosphit und 5 ml Bortrifluorid-Ätherat, der wie unter a) behandelt wird, fallen nach der Aufarbeitung 50 g Rohsirup an. Durch Umfällen werden die polaren Nebenprodukte entfernt. Aus dem reinen Anomerengemisch kristallisieren nach Animpfen 14.8 g 6a (24%, bezogen auf 2) aus.

3,4,6-Tri-O-acetyl-1,2-didesoxy-D-ribo-hex-1-enopyranose (3,4,6-Tri-O-acetyl-D-allal) (5): In eine Lösung aus 10 g Natriumacetat-3 H₂O in 15 ml Wasser und 10 ml Eisessig, die mit einer Kältemischung auf -15° C gekühlt wird, werden 3 g Zinkstaub und 0.3 g Kupfersulfat-5 H₂O in 1 ml Wasser gegeben. Nach Verschwinden der blauen Farbe wird ein Tropfen Platinchloridlösung zugesetzt, und 250 mg (0.61 mmol) 2,3,4,6-Tetra-O-acetyl- α -D-altropyranosylbromid (4)¹⁰) werden über 30 min eingetragen. Eine weitere h wird unter Rühren auf -15° C gehalten, dann in 2 h langsam auf 0°C aufgewärmt. Vom Zink wird abfiltriert und das Filtrat mit Eisessig-Wasser ausgewaschen. Unter Zusatz von Kochsalz wird mit 150 ml Chloroform sorgfältig bei 0°C extrahiert. Die Lösung wird mit Natriumhydrogencarbonatlösung und mit Wasser säurefrei gewaschen, über Magnesiumsulfat getrocknet, filtriert und zu 225 mg Rohgemisch eingeengt. Dünnschichtchromatographie erweist die Bildung von 5 neben Hydrolyseprodukt 2,3,4,6-Tetra-O-acetyl-D-altropyranose. Nach GC auf XE 60 bei 230°C sind 19% 5 und 61% Hydrolyseprodukt entstanden.

Zur quantitativen Trennung wird PSC (eine Platte 20×20 cm²) mit Laufmittel Äther vorgenommen. Extraktion der Schichten mit heißem Methanol und Entfernung der Kieselgelreste ergab 20.2 mg 5 (12%, bezogen auf 4) und 94.8 mg Hydrolyseprodukt (45%, bezogen auf 4). 5 fällt als farbloser Sirup an, $[\alpha]_{10}^{20} = +243^{\circ}$ (c = 0.41 in CHCl₃). ¹H-NMR (100 MHz, CDCl₃): 1-H δ 6.50 ppm d, 2-H 4.90 t, 3-H 5:43 q, 4-H 5.12 q, 5-H, 6-H und 6'-H 4.30 m, OAc 2.02 und 2.07 s; $J_{1,2}$ 6.0, ${}^{4}J_{1,3} < 0.5$, $J_{2,3}$ 6.0, $J_{3,4}$ 3.8, $J_{4,5}$ 10.0 Hz.

C12H16O7 (272.3) Ber. C 52.94 H 5.92 Gef. C 52.38 H 5.80

Reaktion von 5 mit Dimethylphosphit: 7.2 mg (0.026 mmol) 5 werden mit 0.5 ml Dimethylphosphit und einem Tropfen BF₃-Ätherat 2 h auf 60°C crwärmt. Die kalte Reaktionsmischung wird in Chloroform aufgenommen, die Lösung mit Hydrogencarbonatlösung und mit Wasser gewaschen, über MgSO₄ getrocknet, filtriert, eingeengt und i. Hochvak. von Dimethylphosphitresten befreit. Man erhält 4.0 mg Rohgenuisch, das durch Gaschromatographie als Gemisch aus **3a**, **6a** und Nebenprodukten erkannt wird. GC auf XE 60 bei 230°C: 57% Anomerengemisch neben 43% Nebenprodukten. Verhältnis der Retentionszeiten: t_{6a} : $t_{3a} = 1:1.11$. Verhältnis der Anomeren: 64.8% **6a** und 35.2% **3a**.

Diäthyl-(4,6-di-O-acetyl-2,3-didesoxy-a- und - β -D-erythro-hex-2-enopyranosyl)phosphonat (**3b** und **6b**): 5.0 g (19.4 mmol) **2** werden mit 20 ml Diäthylphosphit, 20 ml Benzol und 2 ml BF₃-Ätherat 6 h bei 20°C und dann 2 h bei 60°C gehalten. Nach der üblichen Aufarbeitung erhält man 4.8 g eines schwach gelblichen Rohproduktes. 2.5 g davon werden einer Säulentrennung an 200 g Kieselgel nach Herrmann mit Äther als Elutionsmittel unterworfen. Vom mobileren Isomeren **6b** erhält man 700 mg (20%, bezogen auf **2**). Farbloser Sirup, $[\alpha]_{D}^{20} - 5.2^{\circ}$ (c = 0.23 in CHCl₃).

¹H-NMR (60 MHz, CDCl₃): 1-H δ 4.62 ppm m, 2-H und 3-H 6.00 m, 4-H 5.25 m, 5-H, 6-H und 6'-H 4.3 m, POCH₂ 4.16 okt und 4.25 okt, OAc 2.06 s, Ester-CH₃ 1.37 t; $\Delta\delta$ CH₂ 4.0, J_{HCOP} 8.0, J_{HH} 7.0 Hz.

Vom anderen Isomeren 3b gewinnt man 500 mg (14%, bezogen auf 2). Farbloser Sirup, $[\alpha]_D^{20} = +87.0^\circ$ (c = 1.76 in CHCl₃).

¹H-NMR (60 MHz, CDCl₃): 1-H δ 4.65 ppm m, 2-H und 3-H 5.97 m, 4-H 5.32 m, 5-H, 6-H und 6'-H 4.3 m, POCH₂ 4.19 quin und 4.20 quin, OAc 2.06 s, Ester-CH₃ 1.33 t; $\Delta\delta$ CH₂ 1.0, J_{HCOP} 8.0, J_{HH} 7.0 Hz. - ³¹P-NMR vom Rohgemisch **3b** + **6b**: δ -19.0 + 1 ppm.

C14H23O8P (350.3) Ber. C 48.00 H 6.62 Gef. C 47.05 H 6.52

Dimethyl-(4,6-di-O-acetyl-2,3-didesoxy- α - und - β -D-threo-hex-2-enopyranosyl)phosphonat (9a und 12a)

a) 6.0 g (22.1 mmol) 3,4,6-Tri-O-acetyl-1,2-didesoxy-D-lyxo-hex-1-enopyranose (3,4,6-Tri-O-acetyl-D-galactal) (8) werden mit 60 ml Dimethylphosphit und 1 ml BF₃-Ätherat 2 h auf 60° C erwärmt. Die Reaktionsmischung wird in 200 ml Chloroform aufgenommen, die Lösung mit Hydrogencarbonatlösung und mit Wasser gewaschen, über CaCl₂ getrocknet, eingeengt, mit Aktivkohle in Äthanol behandelt und nach Filtrieren i. Vak. und i. Hochvak. von Dimethylphosphitresten befreit. Man gewinnt so 5.0 g eines schwach gelben Rohsirups.

b) Je 500 mg davon werden auf zwei PSC-Platten $(30 \times 90 \text{ cm}^2)$ aufgetragen und durch fünfmalige Entwicklung mit Äther als Laufmittel in die Anomeren aufgetrennt. Die übliche Extraktion der zwei Zonen ergibt bei der Zone I einen farblosen Sirup, der sofort aus Äther kristallisiert. 150 mg (10.5%, bezogen auf 8) 12a. Schmp. 75- 76°C, $[\alpha]_{D}^{20} = -284.0^{\circ}$ (c = 1.2 in CHCl₃).

IR (KBr): 1745 (C=O, OAc), 1655 (C=C), 1240 (P=O), 1040 cm⁻¹ (P=O=C). – UV (MeOH): $\lambda_{max} = 201$ nm; UV (H₂O): $\lambda_{max} = 221$ nm. – ¹H-NMR (100 MHz, CDCl₃): 1-H & 4.68 ppm okt, 2-H und 3-H 6.14 m, 4-H 5.07 sext, 5-H, 6-H und 6'-H 4.16 bis 4.6 m, POMe 3.77 d und 3.85 d, OAc 2.01 und 2.03 s; $J_{1,2}$ 1.3, $4J_{1,3}$ – 1.2, $5J_{1,4}$ 1.5, $2J_{1,P}$ 19.5,

 $J_{2,3} \sim 10, 4J_{2,4} \sim 0, J_{3,4}$ 4.0, $J_{4,5}$ 2.0, ${}^{5}J_{4,P}$ 2.0; $\Delta\delta CH_3$ 8.0, J_{HCOP} 10.5. $-{}^{31}P-NMR: \delta$ -20.5 + 1 ppm.

C12H19O8P (322.3) Ber. C 44.73 H 5.94 P 9.61 Gef. C 45.07 H 6.07 P 9.20

Das Eluat der Zone II ergibt einen farblosen Sirup. 50 mg **9a** (4%, bezogen auf **8**). $[\alpha]_D^{20} = -116.6^\circ$ (c = 1.1 in CHCl₃).

IR (Film): 1745 (C=O, OAc), 1650 (C=C), 1240 (P=O), 1040 cm⁻¹ (P=O=C). – ¹H-NMR (100 MHz, CDCl₃): 1-H δ 4.65 ppm, 16-Liniensignal, 2-H und 3-H 6.16 m, 4-H 5.08, 16-Liniensignal, 5-H, 6-H und 6'-H 3.9 bis 4.2 m, POMe 3.79 d und 3.82 d, OAc 2.03 s; $J_{1,2}$ 1.8, $4J_{1,3}$ -0.6, $5J_{1,4}$ 1.0, $2J_{1,P}$ 17.6, $J_{2,3}$ ~10, $4J_{2,4}$ <0.2, $J_{3,4}$ 4.0, $J_{4,5}$ 2.2, $5J_{4,P}$ 3.6; $\Delta\delta$ CH₃ 2.7, J_{HCOP} 10.5 Hz. – ³¹P-NMR: δ –19.5 \pm 1 ppm.

C₁₂H₁₉O₈P (322.3) Ber. C 44.73 H 5.94 Gef. C 44.69 H 5.91

c) Bei einer Trennung von 3.0 g Rohprodukt auf 3 PSC-Platten $(30 \times 90 \text{ cm}^2)$ durch fünfmalige Entwicklung mit Äther erhält man 700 mg **12a** (23 %, bezogen auf **8**) und 300 mg **9a** (10 %, bezogen auf **8**).

d) Gaschromatographische Bestimmung der Ausbeuten, XE 60 bei 230°C: Das Rohgemisch besteht aus 68% Anomerengemisch und 32% Nebenprodukten anderer Art. Verhältnis der Retentionszeiten: t_{12a} : $t_{9a} = 1:1.125$. Verhältnis der Anomeren: 74.2% 12a und 25.8% 9a.

e) Bei einem Ansatz von 5.0 g (19.4 mmol) 8, 50 ml Dimethylphosphit und 2 ml BF₃-Ätherat, der wie unter a) behandelt wird, fallen nach der Aufarbeitung 5.0 g Rohsirup an. Durch Animpfen können direkt 1.2 g (19%, bezogen auf 8) β -Anomeres 12a gewonnen werden.

3,4,6-Tri-O-acetyl-1,2-didesoxy-D-xylo-hex-1-enopyranose (3,4,6-Tri-O-acetyl-D-gulal) (11): In eine auf --15°C gekühlte Mischung aus 10 g Natriumacetat · 3 H₂O in 15 ml Wasser und 10 ml Eisessig werden 3 g Zinkstaub und 0.3 g Kupfersulfat 5 H₂O gegeben. Nach Verschwinden der blauen Farbe gibt man einen Tropfen Platinchloridlösung hinzu und trägt bei -15° C in 1 h 2.4 g (5.8 mmol) 2,3,4,6-Tetra-O-acetyl- α -D-idopyranosylbromid (10)¹¹) in die Lösung ein. Man läßt weitere 2 h bei dieser Temp. reagieren und erwärmt dann auf 0° C. Es wird vom Zinkschlamm abfiltriert, das Filtrat mit Essigsäure nachgewaschen, und die Produkte werden unter Zugabe von Kochsalz mit 200 ml Chloroform sorgfältig extrahiert. Die Chloroformphase wird mit Hydrogencarbonatlösung und mit Wasser säurefrei gewaschen, über MgSO4 getrocknet und zu 860 mg Rohprodukt eingeengt. Dünnschichtchromatographie erweist die Bildung von 11 neben Hydrolyseprodukt 2,3,4,6-Tetra-O-acetyl-D-idopyranose. Nach GC auf XE 60 bei 230 $^\circ$ C sind 21 % 11 und 54 % Hydrolyseprodukt entstanden. PSC auf zwei Platten $(20 \times 20 \text{ cm}^2)$ mit Äther als Laufmittel crgibt nach der üblichen Extraktion der Schichten 176.3 mg 11 (11%, bezogen auf 10) und 460.5 mg Hydrolyseprodukt (23%, bezogen auf 10). 11 fällt als farbloser Sirup an, der aus Äther kristallin erhalten wird. Schmp. 97–99°C, $[\alpha]_{D^0}^{20} = +245^{\circ}$ (c = 0.46 in CHCl₃) (Lit.⁷) Schmp. 97–98°C, $[\alpha]_{D^0}^{20} =$ +248° in CHCl₃).

¹H-NMR (100 MHz, CDCl₃): 1-H δ 6.59 ppm d, 2-H, 3-H und 4-H 4.8 bis 5.1 m, 5-H, 6-H und 6'-H 4.18 m, OAc 2.04 und 2.08 s; $J_{1,2}$ 6.3, $4J_{1,3} < 0.5$ Hz.

C12H16O7 (272.3) Ber. C 52.94 H 5.92 Gef. C 52.78 H 6.08

Reaktion von 11 mit Dimethylphosphit: 12 mg (0.044 mmol) 11 werden mit 0.5 ml Dimethylphosphit und einem Tropfen BF₃-Ätherat 2 h auf 60°C erwärmt. Die Reaktionsmischung wird wie üblich aufgearbeitet. Man erhält 8 mg Rohgemisch, das durch GC als Gemisch aus

Chemische Berichte Jahrg. 106

9a, 12a und Nebenprodukten erkannt wird. GC auf XE 60 bei 230°C: 73% Anomerengemisch und 27% Nebenprodukte. Verhältnis der Retentionszeiten: $t_{12a}: t_{9a} = 1:1.125$. Verhältnis der Anomeren: 74.8% 12a und 25.2% 9a.

Diäthyl-(4,6-di-O-acetyl-2,3-didesoxy- α - und - β -D-threo-hex-2-enopyranosyl)phosphonat (9b und 12b): 5.0 g (19.4 mmol) 8 werden mit 50 ml Diäthylphosphit und 1 ml BF₃-Ätherat 2 h auf 60°C erwärmt. Nach der üblichen Aufarbeitung fielen 5.0 g eines gelblichen Rohproduktes an. 2.0 g davon wurden säulenchromatographisch an 60 g Kieselgel nach Herrmann mit Äther getrennt. Vom mobileren Isomeren 12b fielen 200 mg (7%, bezogen auf 8) an, die im Kühlschrank kristallisierten. Bei Raumtemp. zerschmolzen sie zu einem farblosen Sirup. Schmp. $\sim 20^{\circ}$ C, $[\alpha]_{D}^{20} = -269.3^{\circ}$ (c = 1.1 in CHCl₃).

¹H-NMR (60 MHz, CDCl₃): 1-H δ 4.66 ppm m, 2-H und 3-H 6.18 m, 4-H 5.12 m, 5-H, 6-H und 6'-H 4.3 bis 4.6 m, POCH₂ 4.16 okt und 4.25 okt, OAc 2.04 und 2.06 s, Ester-CH₃ 1.36 t; $\Delta\delta$ CH₂ 8.0, J_{HCOP} 8.0, J_{HH} 7.0 Hz.

C14H23O8P (350.3) Ber. C 48.00 H 6.62 Gcf. C 47.23 H 6.51

Das α -Anomere **9b** konnte nicht rein erhalten werden.

Dimethyl-(4-O-acetyl-2,3-didesoxy- α - und - β -D-glycero-pent-2-enopyranosyl)phosphonat (14 und 16) aus 15

a) 11.5 g (57.5 mmol) 3,4-Di-O-acetyl-1,2-didesoxy-D-erythro-pent-1-enopyranose (3,4-Di-O-acetyl-D-arabinal) (15) werden in 50 ml Dimethylphosphit mit 5 ml BF₃-Ätherat 1.5 h bei 60°C gehalten und anschließend wie üblich aufgearbeitet. Man erhält 10.2 g eines schwach gelblichen Rohsirups. 3.0 g davon werden durch PSC auf 3 Platten (30×90 cm²) mit fünfmaliger Entwicklung mit Äther in die Anomeren aufgetrennt. Die übliche Extraktion der zwei Zonen ergibt bei der Zone I 1050 mg 16 (25%, bezogen auf 15) als farblosen Sirup. $[\alpha]_{2D}^{2D} = +206.0^{\circ} (c = 1.27$ in CHCl₃).

¹H-NMR (100 MHz, CDCl₃): 1-H δ 4.58 ppm okt, 2-H und 3-H 6.08 m, 4-H 5.08, 12-Liniensignal, 5-H und 5'-H 4.3 bis 4.4 m, POMe 3.78 d und 3.81 d, OAc 2.04 s; $J_{1,2}$ 1.0, $^{4}J_{1,3} \sim 0, ^{5}J_{1,4}$ 1.7, $^{2}J_{1,P}$ 18.4, $J_{2,3} \sim 10, J_{4,5}$ 3.6, $J_{4,5'}$ 3.6, $J_{5,5'}$ -11.6; $\Delta\delta$ CH₃ 3.0, J_{HCOP} 10.5 Hz. - 31 P-NMR: δ -21.3 ppm.

C₉H₁₅O₆P (250.2) Ber. C 43.21 H 6.04 P 12.38 Gef. C 42.65 H 5.86 P 11.92

Das Eluat der Zone II ergibt 540 mg 14 (13 %, bezogen auf 15) als farblosen Sirup. $[\alpha]_D^{20} = +54.7^{\circ}$ (c = 1.05 in CHCl₃).

¹H-NMR (100 MHz, CDCl₃): 1-H δ 4.52 ppm okt, 2-H und 3-H 6.08 m, 4-H 5.01 sext, 5-H und 5'-H 3.8 bis 4.2 m, POMe 3.77 d und 3.78 d, OAc 2.06 s; $J_{1,2}$ 1.3, $^{4}J_{1,3}$ -1.2, $^{5}J_{1,4}$ 1.5, $^{2}J_{1,P}$ 18.0, $J_{2,3} \sim 10$, $J_{3,4} \sim 6.0$, $J_{4,5} + J_{4,5'}$ 5.5, $^{5}J_{4,P}$ 2.5; $\Delta\delta$ CH₃ 0.8, J_{HCOP} 10.5 Hz. - 31 P-NMR: $\delta - 20.2 \pm 1$ ppm.

C₉H₁₅O₆P (250.2) Ber. C 43.21 H 6.04 Gef. C 42.44 H 5.91

b) Gaschromatographische Bestimmung der Ausbeuten auf XE 60 bei 175°C: Das Rohgemisch besteht aus 74% Anomerengemisch und 26% Nebenprodukten. Verhältnis der Retentionszeiten: t_{16} : $t_{14} = 1:1.03$. Verhältnis der Anomeren: 65.5% 16 und 34.5% 14.

14 und 16 aus Dimethylphosphit und 13

a) 5.5 g (27.5 mmol) 3,4-Di-O-acetyl-1,2-didesoxy-D-threo-pent-1-enopyranose (3,4-Di-O-acetyl-D-xylal) (13) werden mit 55 ml Dimethylphosphit und 5.5 ml BF₃-Ätherat 1.5 h bei 60°C gehalten und anschließend wie üblich aufgearbeitet. Man erhält 4.5 g schwach gelben Sirup. 1.0 g davon werden durch PSC auf zwei Platten (30×90 cm²) mittels fünfmaliger Entwicklung mit Äther in die Anomeren aufgetrennt. Die übliche Extraktion der zwei Zonen

b) GC-Bestimmung auf XE 60 bei 175° C: Das Rohgemisch besteht aus 64% Anomerengemisch und 36% Nebenprodukten. Verhältnis der Anomeren: 64.0% **16** und 36.0% **14**.

Dimethyl-(4-O-acetyl-2,3-didesoxy-a- und $-\beta$ -t-glycero-pent-2-enopyranosyl)phosphonat (18 und 19)

a) 5.5 g (27.5 mmol) 3,4-Di-O-acetyl-1,2-didesoxy-L-erythro-pent-1-enopyranose (3,4-Di-O-acetyl-L-arabinal) (17) werden mit 55 ml Dimethylphosphit und 5.5 ml BF₃-Ätherat 1.5 h auf 60°C erwärmt. Die Mischung wird wie üblich aufgearbeitet und ergibt 4.68 g Rohgemisch. 2.18 g davon werden durch PSC auf einer Platte ($30 \times 90 \text{ cm}^2$) mit fünfmaliger Entwicklung durch Äther in die Anomeren aufgetrennt. Aus der Zone I eluiert man 564 mg 19 (17.5%, bezogen auf 17) als farblosen Sirup. $[\alpha]_{2^0}^{2^0} = -196.0^\circ$ (c = 1.17 in CHCl₃).

¹H-NMR (60 MHz, CDCl₃): 1-H δ 4.57 ppm m, 2-H und 3-H 6.14 m, 4-H 5.18 m, 5-H und 5'-H 4.3 bis 4.5 m, POMe 3.81 d und 3.83 d, OAc 2.06 s; $\Delta\delta$ CH₃ 2.0, J_{HCOP} 10.5 Hz.

C₉H₁₅O₆P (250.2) Ber. C 43,21 H 6.04 Gef. C 42.72 H 5.81

Aus der Zone II eluiert man 300 mg 18 (9.5%, bezogen auf 17) als farblosen Sirup. $[\alpha]_D^{20} = -67.0^\circ$ (c = 1.23 in CHCl₃).

¹H-NMR (60 MHz, CDCl₃): 1-H δ 4.57 ppm m, 2-H und 3-H 6.15 m, 4-H 5.10 m, 5-H und 5'-H 4.0 bis 4.4 m, POMe 3.75 d und 3.76 d, OAe 2.07 s; $\Delta\delta$ CH₃ 1.0, J_{HCOP} 10.5 Hz.

C₉H₁₅O₆P (250.2) Bcr. C 43.21 H 6.04 Gef. C 42.52 H 6.12

b) GC-Bestimmung auf XE 60 bei 175°C: Das Rohgemisch besteht aus 71.5% Anomerengemisch und 28.5% Nebenprodukten. Verhältnis der Retentionszeiten: $t_{19}: t_{18} = 1:1.04$. Verhältnis der Anomeren: 71% 19 und 29% 18.

2-(Dimethylphosphono)-5,6-dihydro-2H-pyran (22): 5.0 g (35.2 mmol) eines Gemisches der Isomeren 2-Acetoxy-5,6-dihydro-2H-pyran (24) und 4-Acetoxy-5,6-dihydro-4H-pyran (25)¹³⁾ werden mit 50 ml Dimethylphosphit und 5 ml BF₃-Ätherat 1 h auf 60°C erwärmt. Nach der üblichen Aufarbeitung gewinnt man 7.0 g eines in Äther schwerlöslichen Sirups. Durch Lösen in Äthanol und Behandlung mit Äther werden die meisten Zersetzungsprodukte ausgefällt. Der restliche Sirup aus Äthanol wird an 60 g Kieselgel nach Herrmann mit Äther chromatographiert. Es werden 1.0 g einer leicht beweglichen Flüssigkeit gewonnen (Ausb. ca. 30%, bezogen auf 25). Für analytische Zwecke wird die Substanz durch PSC auf zwei Platten (20 × 20 cm²) mit Äther als Laufmittel gereinigt. 22 ist eine farblose Flüssigkeit, $n_{D}^{26} = 1.4785$.

IR (Film): 1645 (C=C), 1255 (P=O), 1030 cm⁻¹ (P-O-C). — ¹H-NMR (60 MHz, CDCl₃): 2-H δ 4.58 ppm m, 3-H und 4-H 5.97 m, 5-H und 5'-H 2.72 m, 6-H und 6'-H 4.0 bis 4.2 m, POMe 3.77 d und 3.80 d; ²J_{2,P} 14.0, J_{3,4} ~10, $\Delta\delta$ CH₃ 3.5, J_{HCOP} 10.5 Hz. — ³¹P-NMR: δ -22.5 \pm 1 ppm.

C₇H₁₃O₄P (192.2) Ber. C 43.76 H 6.82 P 16.12 Gef. C 43.13 H 6.58 P 14.86

Versuche zur Anomerisierung und Epimerisierung

a) 50 mg 6a werden mit 0.5 ml Dimethylphosphit und einem Tropfen BF₃-Ätherat 2 h auf 60°C erwärmt. Die Reaktionsmischung wird wie üblich aufgearbeitet. Aus Äther kristallisieren 30 mg 6a wieder aus. Im Rohprodukt sind kein α -Anomeres 3a und kein 3-Dimethylphosphonoderivat wie 26 enthalten, wie DC (Fünffachentwicklung in Äther), ¹H-NMR (60 MHz, CDCl₃) und GC (XE 60 bei 230°C) zeigen. b) 30 mg 6a werden 3 h unter Rückfluß in 5 ml absol. Toluol erhitzt. DC, NMR und GC (wie oben) zeigen nur eine Anreicherung an Zersetzungsprodukten, aber kein 3a oder 26.

c) 30 mg 6a werden in 5 ml absol. Nitrobenzol 3 h unter Rückfluß erhitzt. Untersuchung durch DC, NMR und GC zeigt keine Veränderung des Ausgangsmaterials.

d) Entsprechend werden diese drei Versuche parallel mit dem reinen α -Anomeren **3a** durchgeführt. Neben der Bildung geringer Mengen Zersetzungsprodukte tritt keine Umwandlung auf.

e) In sechs Parallelversuchen werden die α - und β -D-threo-Phosphonate **9a** und **12a** entsprechend untersucht. Anomerisierung oder Epimerisierung kann nicht festgestellt werden.

f) Die Reaktionen der reinen α - und β -D- und -L-glycero-Phosphonate 14 und 16 sowie 18 und 19 unter den Bedingungen der Synthese und unter Rückfluß in Toluol und in Nitrobenzol geben nach DC, NMR und GC keinen Hinweis auf Anomerisierungen oder Epimerisierungen.

Dimethyl-(4,6-di-O-acetyl-2,3-didesoxy- β -D-erythro-hexopyranosyl)phosphonat (29): 500 mg Platindioxid werden in 200 ml Essigester vorhydriert. In die Lösung werden 500 mg (1.56 mmol) 6a gegeben und bei leichtem Überdruck 2 h hydriert. Nach Abfiltrieren des Katalysators und Einengen erhält man 410 mg 29 (82 %) als farblosen Sirup. $[\alpha]_{D}^{20} = +30.9^{\circ}$ (c = 1.06 in CHCl₃).

¹H-NMR (60 MHz, CDCl₃): 4-H δ 4.70 ppm m, 1-H, 5-H, 6-H und 6'-H 4.06 bis 4.55 m 2-H, 2'-H, 3-H und 3'-H 1.87 bis 2.16 m, POMe 3.80 d und 3.86 d, OAc 2.05 s, $\Delta\delta$ CH₃ 5.0, J_{HCOP} 10.5 Hz. -3^{1} P-NMR: $\delta -26.2 \pm 1$ ppm.

C12H21O8P (324.3) Ber. C 44.45 H 6.53 P 9.55 Gef. C 45.09 H 6.83 P 9.28

Dimethyl-(4,6-di-O-acetyl-2,3-didesoxy-2,3-dideuterio- β -D-erythro-hexopyranosyl)phosphonat (**29**-D₂): 50 mg Platindioxid werden in 3 ml Aceton-D₆ vordeuteriert. In die Lösung werden 100 mg (0.31 mmol) **6a** eingetragen und 1 h bei 20°C deuteriert. Vom Katalysator wird abzentrifugiert und eingeengt. Ausb. 100 mg **29**-D₂ (98%) als farbloser Sirup.

¹H-NMR (60 MHz, CDCl₃): 4-H δ 4.70 ppm m, 1-H, 5-H, 6-H und 6'-H 4.1 bis 4.5 m, 2-H und 3-H 1.7 bis 2.0 m, POMe 3.80 d und 3.86 d, OAc 2.05 s; $\Delta\delta$ CH₃ 5.0, J_{HCOP} 10.5 Hz.

 $C_{12}H_{19}D_2O_8P~(326.3) \sim C_{12}H_{23}O_8P~(326.3) \quad \mbox{Ber. C 44.17 H 7.11 P 9.49} \\ Gef. C 44.79 H 7.12 P 9.23 \label{eq:constraint}$

Dimethyl-(2,3-didesoxy- β -D-erythro-hex-2-enopyranosyl)phosphonat (30):200 mg (0.62 mmol) 6a werden in 10 ml 0.05 N Natriummethylatlösung gelöst. Nach 10 h bei Raumtemp. wird mit CO₂ neutralisiert, eingeengt, in Essigester aufgenommen, filtriert und erneut zum farblosen Sirup eingedampft. Ausb. 140 mg (95%). [α] $_{20}^{20} = -10.3^{\circ}$ (c = 1.22 in CH₃OH).

¹H-NMR (60 MHz, CD₃OD): 1-H δ 4.18 ppm m, 2-H und 3-H 5.95 m, 4-H 5.2 m, 5-H, 6-H und 6'-H 4.15 m, POCH₃ 3.75 und 3.85 d; $\Delta\delta$ CH₃ 6.0, J_{HCOP} 10.5 Hz.

 $\begin{array}{c} C_8 H_{15} O_6 P \ (238.2) & \text{Ber. C } 40.35 & H \ 6.35 & P \ 13.00 \\ & \text{Gef. C } 40.78 & H \ 6.50 & P \ 12.22 \end{array}$

 $(2,3-Didesoxy-\beta-D-erythro-hex-2-enopyranosyl)$ phosphonsäure (33), Monodicyclohexylammoniumsalz

a) 500 mg (1.56 mmol) **6a** werden mit 10 ml Trimethylchlorsilan 20 h unter Rückfluß erhitzt, dann wird eingeengt und erneut mit 10 ml Trimethylchlorsilan 20 h erhitzt. Dieser Vorgang wird insgesamt fünfmal wiederholt. DC in Benzol/Aceton (1:1) zeigt dann vollständige Umsetzung zu Bistrimethylsilyl-(4,6-di-O-acetyl-2,3-didesoxy-3-D-erythro-hex-2-enopyranosyl)phosphonat (**31**) an. - 1H-NMR (60 MHz, CDCl₃): 1-H δ 4.52 ppm m, 2-H und 3-H 6.04 m, 4-H 5.22 m, 5-H, 6-H und 6'-H 4.28 m, OAc 2.07 s, SiMe 0.32 s.

b) Sirupöses **31** wird über Nacht mit 25 ml Wasser bei Raumtemp. gerührt. DC in Benzol/ Äthanol/Wasser (50:45:5) zeigt ein Produkt. Unpolare Zersetzungsprodukte werden mit Chloroform extrahiert. Man gewinnt (4,6-Di-O-acetyl-2,3-didesoxy- β -D-*erythro*-hex-2-enopyranosyl)phosphonsäure (**32**) als farblosen Sirup. – ¹H-NMR (60 MHz, CD₃OD): 1-H δ 4.26 ppm m, 2-H und 3-H 5.98 m, 4-H und OH 5.2 m, 5-H, 6-H und 6'-H 4.26 m, OAc 2.05 s. -- Die Verbindung ist stark sauer und spaltet in Lösung die Acetylgruppen ab.

c) 32 wird in absol. Methanol gelöst und mit Natriummethylatlösung in Methanol bis zur alkalischen Reaktion versetzt. Man läßt über Nacht stehen und behandelt mit Dowex WX 8 H^{\odot}. Das DC der stark sauren Lösung weist einen Fleck auf. Man gewinnt 250 mg der freien Phosphonsäure 33 (80.0%, bezogen auf 6a) als farblose, nichtkristalline Verbindung. – ¹H-NMR (60 MHz, DMSO-D₆): 2-H, 3-H und OH δ 5.85 ppm m, 1-H 4.28 \sim d, 4-H, 5-H, 6-H und 6'-H 3.3 bis 4.0 m. $J_{1,P} \sim 20$ Hz.

d) Die sirupöse freic Phosphonsäure 33 wird in 25 ml Methanol gelöst und mit 1 ml Dicyclohexylamin über Nacht bei Raumtemp. belassen. Es wird scharf eingeengt, in wenig n-Butanol aufgenommen, mit Äther gefällt und abgenutscht. Die farblosen Kristalle werden noch fünfmal aus n-Butanol/Äther umgefällt. Das entstandene Salz von 33 ist schwach verunreinigt, wie Schmelzintervall und Analyse zeigen. Schmp. $110-120^{\circ}$ C, $[\alpha]_{D}^{20} = -44.7^{\circ}$ (c = 0.97 in H₂O).

C18H34NO6P (391.4) Ber. C 55.23 H 8.75 N 3.58 Gef. C 52.97 H 8.89 N 3.46

33, Bariumsalz

a) 3.0 g (3.95 mmol) 6a werden mit insgesamt 40 ml Trimethylchlorsilan unter zwischenzeitigem Einengen insgesamt 46 h unter Rückfluß erhitzt und zu 31 umgesetzt.

b) 31 wird mit 40 ml Wasser 48 h bei Raumtemp. gerührt. Die Lösung wird durch Extraktion mit Chloroform von unpolaren Nebenprodukten befreit. Einengen ergibt die acetylblockierte Phosphonsäure 32.

c) Die Lösung von 32 in Methanol wird mit Natriummethylatlösung alkalisch gemacht. Nach eingetretener Umesterung wird mit Dowex WX 8 H^{\oplus} neutralisiert und eingeengt. Der erhaltene leicht verunreinigte Sirup wird an 60 g Kieselgel nach Herrmann mit Benzol/ Äthanol/Wasser (50:45:5) chromatographiert, und man erhält 300 mg (15%, bezogen auf **6a**) reine Phosphonsäure 33 als farblosen Sirup.

d) Die Lösung der Säure 33 in Wasser wird mit Bariumhydroxid schwach alkalisch gemacht. Der Überschuß an Bariumhydroxid wird mit CO₂ neutralisiert, und die unlöslichen Salze werden abzentrifugiert. Die Lösung wird bei 40°C-Badtemp. eingeengt und das Bariumphosphonat von 33 mit Äthanol ausgefällt, abgesaugt, erneut in wenig Wasser gelöst und mit Äthanol umgefällt. Nach Trocknen i. Hochvak. erhält man ein farbloses, schr hygroskopisches Pulver. Ausb. 195 mg Ba-Salz von 33 (38%, bezogen auf 32, und 6%, bezogen auf 6a). Zets.-P. ab 240°C, $[\alpha]_{20}^{20} = -48.8^{\circ}$ (c = 1.06 in H₂O).

Ba[C₆H₉O₆P] (345.5) Ber. C 20.86 H 2.63 Gef. C 19.65 H 2.89

$(2,3-Didesoxy-\beta-D-threo-hex-2-enopyranosyl)$ phosphonsäure (36), Bariumsalz

a) 250 mg (0.78 mmol) **12a** werden im diskontinuierlichen Verfahren in 2 d mit jeweils 5-ml-Mengen Trimethylchlorsilan unter Rückfluß erhitzt und geben das Bistrimethylsilylphosphonat **34** als farblosen Sirup.

b) 34 wird mit 10 ml Wasser über Nacht bei Raumtemp. gerührt, die Lösung mit Chloroform extrahiert und die wäßr. Phase zu sirupöser farbloser Phosphonsäure 35 eingeengt. c) Die Lösung von 35 in Methanol wird mit Natriummethylatlösung bis zur alkalischen Reaktion versetzt. Nach 10 h bei Raumtemp. wird mit Dowex WX 8 H $^{\oplus}$ neutralisiert und eingeengt. Durch Lösen in Methanol und Zugabe von Äther erhält man die freie Phosphonsäure 36 als extrem hygroskopisches farbloses Pulver.

d) Die Lösung von 36 in Wasser wird mit Bariumhydroxid schwach alkalisch gemacht. Der Überschuß an Bariumhydroxid wird mit CO₂ als Bariumcarbonat gefällt und abzentrifugiert. Die Lösung wird auf ein kleines Volumen eingeengt und das Bariumsalz der Phosphonsäure 36 mit Äthanol ausgefällt. Zur Reinigung wird mehrmals aus Wasser/Äthanol umgefällt, filtriert und i. Hochvak. getrocknet. Ausb. 62 mg Ba-Salz (23 %, bezogen auf 12a). Zers.-P. ab 230°C, $[\alpha]_{10}^{20} = -144.5^{\circ}$ (c = 0.45 in H₂O).

Ba[C₆H₉O₆P] (345.5) Ber. C 20.86 H 2.63 Gef. C 21.03 H 2.68

[278/73]